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Abstract. Using the numerical renormalization group method, the dependences on temperature of the
magnetic susceptibility χ(T ) and specific heat C(T ) are obtained for the single-impurity Anderson model
with inclusion of d-f the Coulomb interaction. It is shown that the exciton effects caused by this effect
(charge fluctuations) can significantly change the behaviour of C(T ) in comparison with the standard
Anderson model at moderately low temperatures, whereas the behaviour of χ(T ) remains nearly universal.
The ground-state and temperature-dependent renormalizations of the effective hybridization parameter
and f -level position caused by the d-f interaction are calculated, and satisfactory agreement with the
Hartree-Fock approximation is derived.

PACS. 71.27.+a Strongly correlated electron systems; heavy fermions – 71.28.+d Narrow-band systems;
intermediate-valence solids – 75.30.Mb Valence fluctuation, Kondo lattice, and heavy-fermion phenomena

1 Introduction

The 4f -electron compounds represent an interesting sys-
tem demonstrating intermediate valence (IV) of rare earth
elements (usually between 2+ and 3+) in a number
of properties. For example, this includes among several
things, the lattice parameters (which are intermediate
between those for isostructural compounds with di- and
trivalent ions), and core-level spectra (which are mixtures
of the spectra for di- and trivalent ions with compara-
ble weights). Heavy fermion (HF) compounds form an-
other important class of f -electron systems with anoma-
lous properties [5]. For the HF metals, it is commonly
accepted now that they are Kondo lattices, meaning that
their small energy scale electron properties are described
in terms of the Kondo temperature TK, i.e. the width of
the Kondo resonance due to spin-dependent scattering of
conduction electrons by f -electron centres [6]. Intermedi-
ate valence compounds are also frequently considered to
possess Kondo lattices, but with higher TK (e.g. see refer-
ence [4]).

However, this description is not strictly correct since,
in addition to spin (“Kondo”) fluctuations, valence or
charge fluctuations should also be included in models
of these systems. They are determined in part by the
Coulomb repulsion G between conduction and localized
electrons (the Falicov-Kimball interaction [7]). Taking into
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account the d-f interaction, together with the hybridiza-
tion processes, it is possible to describe the IV state as
being a kind of exciton condensation [8,9]. Recently, first-
principles calculations of the parameter G have been pro-
posed. These demonstrate that proper account of this in-
teraction is necessary to describe the equation of state for
the IV phase of Yb under pressure [10].

At present, the normal Kondo effect is rigorously de-
scribed by the s-d exchange (Kondo) and Anderson mod-
els. Moreover, for one-impurity situations, the exact nu-
merical (renormalization group) [11,12] and analytical
Bethe-ansatz [13,14] solutions to this problem are known.
Universal curves exist that describe the behaviour of ther-
modynamic properties for the Kondo [11,12] and interme-
diate valence [12] regimes. These permit a detailed com-
parison with experimental data for anomalous f -systems.
However, similarly detailed information is not available in
the presence of both the s-d exchange and Coulomb inter-
action.

Formally, the charge fluctuations can be also described
in terms of a pseudo-Kondo effect: the states with (with-
out) an f -hole are considered as pseudospin-up (down)
states (respectively) [15,16]. It is the degeneracy of quan-
tum states for a scattering centre that is crucial for the
formation of the Kondo resonance [17]. In the IV case, the
divalent and trivalent states are degenerate by definition;
thus, this analogy is not surprising. Therefore, it is natural
to consider the Kondo phenomenon for the IV compounds
taking into account both spin and charge fluctuations;
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or, equivalently, both the “Kondo” and exciton (“Falicov-
Kimball”) effects. According to reference [12], the addi-
tional d-f Coulomb interaction is a marginal operator of
the valence fluctuation fixed point.

Since there is no clear demarcation between the IV
and Kondo systems, it can be supposed that the exci-
ton effects are also relevant for the latter case. Recent
analysis of the interplay between true Kondo and pseudo-
Kondo (exciton) effects [18] by the “poor-man’s scal-
ing” approach [19,20], demonstrates that there is a cru-
cial modification of the low-energy (infrared) behaviour,
compared with pure cases of the Anderson model and
Falicov-Kimball (“resonant level”) models. However, this
approach can give only a qualitative insight into the prop-
erties of the system. Here, we investigate the effects of this
interplay by applying the numerical renormalization group
(NRG) formalism [11,12].

2 Formulation of the model
and computational procedure

The Hamiltonian for the asymmetric Anderson model,
with inclusion of the Falicov-Kimball interaction (on-site
d-f Coulomb repulsion G), is

H =
∑

σ

Eff †
σfσ +

∑

kσ

[
tkc†kσckσ + V

(
c†kσfσ + f †

σckσ

)]

+ G
∑

σσ′
f †

σfσc†σ′cσ′ (1)

where the on-site f -f Coulomb interaction U is set to in-
finity, so that the doubly occupied states are forbidden;
and f †

iσ = |iσ〉〈i0| is the Hubbard operator (|iσ〉 and |i0〉
are single-occupied and empty site states). For simplic-
ity, the dependence on k of the hybridization matrix ele-
ment V is neglected. Physically, the choice U = ∞ means
that interactions between two electron configurations only
are included, i.e. fn−1 and fn, but the “upper Hubbard
band” associated with fn+1 configurations is ignored. This
approximation applies well to real rare-earth compounds
when the valence fluctuations involve only valences 2+ and
3+ (for Eu, Sm, Tm, and Yb) or 3+ and 4+ for Ce [1–3].

It is known that the d-f Coulomb interaction does
not change the low-energy fixed point (and consequently
the low-temperature behaviour): it remains the Fermi liq-
uid fixed point of the standard impurity Anderson model
(see [21]). To investigate a wider temperature interval, the
standard NRG method developed earlier for the Ander-
son model [12] is employed, together with some impor-
tant modifications. Earlier work used the NRG method
to investigate the effects of Falicov-Kimball interactions:
see references [22,23]. The conclusion from those calcula-
tions — that the Falicov-Kimball interaction results only
in a parameter renormalization compared with the pure
Anderson model — in general, is not completely accu-
rate. It does not consider the intermediate valence regime.
Furthermore, the heat capacity is not calculated; yet, as
will be shown later, the deviations from the renormalized

Anderson model are much more important than those in
the magnetic susceptibility. The effects of the d-f interac-
tion in the extended Anderson model on the static proper-
ties and dynamical excitation spectra — especially in the
low-energy region — and on TK have been investigated
previously by the NRG method in reference [24].

The standard numerical renormalization group
method adopts a heuristic approach to choose the opti-
mum temperature for each NRG step [12]. An automatic
procedure is introduced into the standard formalism in
this work.

A finite-resolution spectrum is obtained at each NRG
step. This is truncated due to the neglect of high-energy
states [11]. After the Nth step of the NRG procedure a
finite set of the lowest energy levels {En} remains, the
numerous upper energy levels being discarded at previ-
ous steps. Then, for each NRG step, an optimum tem-
perature TN is chosen that achieves the most exact cal-
culation of thermodynamic averages using the subset of
remaining energy levels. Indeed, the averages cannot be
calculated using temperatures that are too low, otherwise
the discrete nature of the energy levels causes instability in
the algorithm. However, at sufficiently high temperatures
the neglected high-energy states can give an appreciable
contribution to the partition function. This contribution
{Eup} is estimated as follows. Assume that on going from
(N − 1)th to Nth iteration step, the energy of the states
do not change, but their number increases by the factor
of 4. Then, the average energies calculated for the Nth
set of data with and without the discarded states can be
compared. The average energy of the retained states is

〈E〉N =
∑

n En exp (−βEn)∑
n exp (−βEn)

, (2)

where β = 1/kBT ). The average energy taking into ac-
count all the states is

〈E〉corrN =

∑
n En exp (−βEn) +

∑
up Eup exp (−βEup)∑

n exp (−βEn) +
∑

up exp (−βEup)
.

(3)
Evidently, the difference 〈E〉corrN − 〈E〉N is negligible at
low temperatures, but increases with increasing T . The
temperature TN at which this difference reaches a chosen
threshold (3×10−5kBT ) is taken to be the optimum for the
step N . Following this, the thermodynamic quantities can
be calculated, in particular the magnetic susceptibility χ,
at TN for all steps N . At low temperatures, the material
deviates from Curie’s law: there is a linear decrease with
temperature of the quantity kBTχ(T )/(gµB)2, in agree-
ment with previous results [12].

The impurity specific heat is obtained by cubic spline
interpolation of the difference between total average en-
ergy and the energy of a corresponding free electron gas
between different TN , and subsequently differentiating
this function with respect to T .

When performing the calculations, about 2500 states
are retained, and the parameter for the logarithmic dis-
cretization of the conduction band is Λ = 2. The calcu-
lations are repeated using Λ = 1.5 to test their accuracy.
These results are described in the next section.
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Fig. 1. The quantity kBTχ(T )/(gµB)2 and the specific heat
C(T )/kB for Ef = −0.14, V = 0.1. The solid line corresponds
to finite G, and the dotted line to when G = 0, with parame-

ters E
(G=0)
f and V (G=0) (for details see Tab. 1). Below TK the

universal Wilson curve appears.

3 Results and discussion

The results of the calculation are shown in the figures. A
rectangular conduction electron density of states is used
where the half-bandwidth is D = 1. In addition to the
magnetic susceptibility and specific heat, the impurity
level occupation number nf (valence) is also calculated.

Figures 1 and 2 demonstrate a crossover from a double
peak to single maximum temperature behaviour for the
specific heat. It should be noted that such a crossover takes
also place in the standard Anderson model with changing
Ef [25]. The two peaks are well separated when nf ≈ 1.
When nf is small only one peak exists: the influence of
the Falicov-Kimball interaction is weak, as expected from
the form of the Hamiltonian. This influence is strongest
in the intermediate valence case when nf ≈ 0.7.

One can see that the temperature dependence of the
magnetic susceptibility is always similar to that for the
Anderson model without the d-f Coulomb interaction.
Nevertheless, the specific heat behaviour can be signifi-
cantly different, especially when G is sufficiently large.

Fig. 2. The same data as in Figure 1 for Ef = −0.25, V = 0.1.

Fig. 3. The dependences on G of nf (•) and TK (◦). (Ef =
−0.14, V = 0.1).

Similar to reference [12], the Kondo temperature TK

is the temperature at which kBTχ(T )/(gµB)2 = 0.0701.
The dependence on G of the ground-state f -level occupa-
tion number nf and TK are illustrated by Figure 3. More
detailed information is presented in Table 1.

There is an important question as to whether the ef-
fects of the d-f Coulomb interaction can be described
by the renormalization of the parameters usual Ander-
son Hamiltonian only (without the Falicov interaction),
or they can result in qualitatively new effects. To inves-
tigate this problem the effective hybridization parameter
V (G=0) and the effective position of the f -level E

(G=0)
f ,

are defined as as the parameters of the standard Anderson
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Table 1. The dependences on G of the Kondo temperature TK and impurity occupation number nf for V = 0.1; the Hartree-Fock

values V HF and EHF are defined by equation (4). The quantities E
(G=0)
f and V (G=0) are described in the text.

Ef G kBTK nf E
(G=0)
f EHF

f V (G=0) V HF

−0.06 0 7.43 × 10−5 0.875 −0.06 −0.06 0.1 0.1
−0.06 0.01 2.23 × 10−4 0.825 −0.049 −0.050 0.1 0.101
−0.06 0.02 6.59 × 10−4 0.750 −0.04 −0.040 0.101 0.102
−0.06 0.03 1.70 × 10−3 0.651 −0.031 −0.032 0.103 0.104
−0.06 0.04 3.71 × 10−3 0.542 −0.022 −0.021 0.104 0.106
−0.06 0.05 6.80 × 10−3 0.443 −0.013 −0.011 0.105 0.108

−0.14 0 1.81 × 10−8 0.965 −0.14 −0.14 0.1 0.1
−0.14 0.02 2.19 × 10−7 0.955 −0.120 −0.121 0.101 0.101
−0.14 0.05 6.45 × 10−6 0.928 −0.092 −0.093 0.105 0.104
−0.14 0.1 6.42 × 10−4 0.763 −0.048 −0.050 0.11 0.113
−0.14 0.15 1.00 × 10−2 0.402 −0.01 0.001 0.116 0.125
−0.14 0.2 2.88 × 10−2 0.220 0.027 0.053 0.12 0.132

−0.25 0.2 1.11 × 10−4 0.865 −0.07 −0.095 0.111 0.122
−0.25 0.23 6.43 × 10−4 0.771 −0.048 −0.071 0.11 0.131
−0.25 0.3 9.37 × 10−3 0.443 −0.013 0.008 0.12 0.153

Fig. 4. The quantity kBTχ(T )/(gµB)2 and specific heat
C(T )/kB for Ef = −0.5, V = 0.1, G = 0.4 (solid) and

E
(G=0)
f = −0.14, V (G=0) = 0.1, G = 0 (dotted). With these

parameters, nf = 0.96 at T = 0. The inset shows V HF(T )
plotted against kBT/D.

model (with G = 0) that give the same values of nf (at
zero temperature) and TK, as our Hamiltonian (1). A com-
parison of the present results with those for the model
with G = 0, and with the effective parameters introduced
above shows that for the susceptibility the effects of G in
the temperature dependence are nearly eliminated by the
parameter renormalization (see Fig. 4). However, weak os-
cillations at the same temperatures where the changes in
the specific heat C(T ) take place.

More generally, this elimination is possible for C(T ) at
sufficiently low temperatures, T � TK. This means that
the Wilson ratio is not influenced by the d-f interaction at

T ≤ TK, but its dependence on temperature at higher tem-
peratures is different when G = 0 and G �= 0. Naturally, it
is expected that the d-f Coulomb (but not exchange) in-
teraction is less important for the magnetic susceptibility
than for the specific heat. The former is connected with
only spin degrees of freedom, while the latter characterizes
both spin and charge fluctuations.

Exciton effects are responsible for the enhancement of
the double-peak structure at high temperatures for C(T ).
This behaviour becomes stronger with increasing G (see
Fig. 2). Also, charge (valence) fluctuations increase, result-
ing in a further deviation of valence from an integer value
(e.g., nf = 0.87 for G = 0.2 and nf = 0.77 for G = 0.23).
Note that when G is sufficiently large, the metal-insulator
transition occurs in the Falicov-Kimball model. This is
similar to the Mott-Hubbard transition [26]. It is accom-
panied by a spectral density transfer, and the formation
of so-called “Hubbard bands” in the electron energy spec-
trum.

To exclude systematic errors, the calculations are re-
peated using the same model parameters as previously in
Figure 2, except with Λ = 1.5 instead of Λ = 2: see Fig-
ure 5. Recall that the band discretization error decreases
when Λ→1. The influence of the Falicov interaction on
C(T ) is nearly the same, thus demonstrating that the
change in specific heat is not an artifact of the method.

Figure 6 shows the magnetic impurity entropy S(T )
calculated directly using G = 0 and G = 0.4. The cal-
culation of this quantity is more precise than C(T ) since
differentiation with respect to T is not required. At high
temperatures S(T ) → ln 3 = 1.0986 since at the limit of
large-U , the impurity has three degrees of freedom. At
lower temperatures the dependence S(T ) demonstrates
crossovers and points of inflection which correspond to
maxima in C(T ). Similar to the other properties, the ef-
fect on these features is stronger for finite G. At higher



A.K. Zhuravlev et al.: Role of the d-f Coulomb interaction in intermediate valence and Kondo systems 381

Fig. 5. The specific heat C(T )/kB using the same model pa-
rameters as in Figure 2 except for Λ, to show the effect of
reducing this parameter from 2 to 1.5.

Fig. 6. The magnetic impurity entropy using the same model
parameters as in Figure 4.

temperatures, there is clearly a difference between the re-
sults for G = 0 and G = 0.4. Although this is only modest
for S(T ) (and Tχ(T )), it is significantly greater following
differentiation with respect to T when calculating C(T ).

Recently, a method has been proposed to include the
effects of the Falicov-Kimball interactions into realistic
electronic structure calculations for intermediate valence
systems [10]. In particular, it is shown that these effects
are crucial for an adequate description of the equation
of state for elemental Yb under high pressure. In refer-
ence [10], these effects are taken into account using the
unrestricted Hartree-Fock approximation [9],

EHF
f = Ef + G

∑

σ

〈c†σcσ〉, V HF = V − G〈c†σfσ〉. (4)

Therefore, it is important to check this approximation us-
ing the accurate NRG results obtained here. A compar-
ison of the parameters of the effective Anderson model
with the Hartree-Fock values (4), which are presented in

the Table 1, shows that this approximation works well, at
least when the d-f interaction is not too large (G < 0.25).
The HF mean-field decoupling is also justified by the d-f
Coulomb interaction being marginal [12]. The inset in Fig-
ure 4 shows V HF(T ) plotted against kBT/D. In the Kondo
regime it can be seen that a maximum occurs which is
qualitatively similar to the result of calculations employ-
ing the poor-man’s scaling formalism [18]. However, it is
considerably smaller than that predicted in reference [18].

The significant temperature dependence of the effec-
tive hybridization has other important consequences. It is
expected that thermodynamical averages at different tem-
peratures will correspond to different effective Anderson
models. Our NRG calculations confirm that the Falicov
model coincides with an Anderson model at low temper-
atures where the hybridization parameter tends to a def-
inite constant limit. However, a shift to higher temper-
atures of the second maximum in specific heat occurs,
together with the corresponding peculiar feature in the
magnetic susceptibility (see in particular Fig.s 4 and 6).
This demonstrates that there is a temperature-dependent
renormalization of the effective parameters, since such a
shift occurs when Ef or |V | increases.

To conclude, an accurate NRG solution is obtained of
the one-impurity Anderson model with inclusion of the
Falicov-Kimball interaction (excitonic effects). Some new
features in comparison with the standard Anderson model
occur (in particular, in the temperature dependence of
specific heat). These features can be observed experimen-
tally from measurements of specific heat and magnetic
susceptibility at high temperatures, and comparison with
the “universal” dependences. Such investigations could
clarify the role of charge fluctuations in the rare-earth
systems under consideration. A generalization of the re-
sults to a lattice case would be of interest for the theory
of anomalous dense f -systems, including Kondo lattices,
heavy fermion, and intermediate valence compounds.
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